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SUMMARY

The dynamic properties at various temperatures of braids impregnated with
polymer can be measured by using the braid as the suspension of a torsion pendu-
lum. This report describes the electronic and mechanical design of a torsional
braid pendulum displacement transducer which is an advance in the state of the
art. The transducer uses a unique optical design consisting of refracting
quartz windows used in conjunction with a differential photocell to produce a
null signal. The release mechanism for initiating free torsional oscillation of
the pendulum has also been improved. Analysis of the precision and accuracy of
the transducer indicated that the maximum relative error in measuring torsional
amplitude was approximately 0.7 percent. A serious problem inherent in all
instruments which use a torsional suspension was analyzed: misalignment of the
physical and torsional axes of the torsional member which results in modulation
of the amplitude of the free oscillation.

INTRODUCTION

Torsional braid pendulum displacement transducers have been used to gen-
erate the dynamic mechanical spectra of polymeric materials over a wide tempera-
ture range (refs. 1 and 2). Previously, a solid polymeric suspension element
was part of the torsion pendulum, but because of undesirable effects due mostly
to temperature changes, the element was changed to a multifilament glass braid
impregnated with the polymer sample to be studied. Tests have shown that this
braid makes the undesirable temperature effects insignificant. With the impreg-
nated braid suspension mounted in a furnace tube so that its temperature can be
controlled, the pendulum is released from an initial torsional offset which
initiates free torsional oscillation. 1Ideally, the pendulum motion should have
a damped sinusoidal waveform from which the damping coefficient, rigidity, and
shear modulus of the polymer-impregnated braid can be obtained. Since this
information is very useful for practical application of various polymers and
since the braid-suspended pendulum system has decided advantages over other
methods for obtaining this information, considerable effort has been and is
still being expended to improve transducers and obtain real-time data analysis
capability (refs. 3, 4, and 5). The existing pendulum displacement transducer
used to measure the pendulum oscillation is described in reference 1. A fixed
and a moving polarizer are attached to the pendulum, and a light beam is passed
through both into a photomultiplier tube. The output of the tube is a function
of pendulum displacement. A less bulky, simpler to operate, and more sensitive
transducer was desired with a better method for initiating the free torsional
oscillation. The ensuing research effort resulted in a torsional braid pendulum
transducer which meets and exceeds these criteria and which is considered an
advance in the state of the art. The transducer uses a unique optical system
for which a patent has been awarded (ref. 6). It employs a differential photo-
cell which was made at Langley Research Center, since it could not be obtained
commercially. These and other innovations are described in this paper. A




complete mathematical analysis was also made of the transducer precision and
accuracy. The transducer, the innovations used in its design, and the results
of the mathematical analysis are applicable to similar areas of endeavor.

SYMBOLS
a = cw/w' (see eq. (C20))
b = R/2J
c damping coefficient of torsional member
C11Corv-- constants
D inside diameter of coil
d window thickness; also diameter of coil wire; also translation of 6
to O
dl’d2"" constants
G shear modulus
I mass moment of inertia
J torsional polar moment of inertia
Ja polar areal moment of inertia of the torsional member
K torsional spring constant or torsional rigidity
L length of torsional member
Ly,Lo lengths of two parts of compound torsional member
<4 Lagrangian function
Z length of coil
L damping constant
m displacement in figure 10; also mass of pendulum
N number of layers of wire in coil
n displacement in figure 10; also refractive index; also number of

half-periods between peak amplitudes



ny
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w

wl

fractional overshoot

radius of curvature of window

total length of wire in coil

period of torsional oscillation; also kinetic energy

component of Ty normal to torsional member

unperturbed torsion in torsional member

component of Ty parallel to torsional member

time

potential energy

coordinates of center of gravity of pendulum

phase angle

angle between incoming ray and normal to curved surface of window
angle between plane surface of window and exiting refracted ray
torsional displacement of pendulum

initial torsional displacement of pendulum

0 measured from reference datum other than © = 0O

angle between refracted ray and normal to curved surface of window
standard deviation of mean value

angular displacement of window

angular displacements of torsional member from Y-axis

natural angular velocity

damped angular velocity

A dot over a symbol denotes differentiation with respect to time.




DESCRIPTION OF TRANSDUCER

The torsional braid pendulum displacement transducer with its related

hardware and electronics is shown in figure 1. Figure 2 is a cutaway drawing
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Figure 1.- Torsional braid pendulum displacement transducer
installed with related hardware and electronics.

of the mechanical-optical part of the transducer which more clearly shows its
operation. Light transmitted from the source (14) through a servo-driven win-
dow (1l6) is collimated (18), passed through a focusing lens (11) and through a
second window (24) mounted on the torsional braid pendulum, and brought to
focus on a differential photocell (26). As the pendulum rotates, the motion of
the light source image on the photocell produces an error signal which is fed
into an electronic circuit which drives the galvanometer (13) and its window
(16) in a direction that restores the light image to its original, or null,
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Figure 2.- Mechanical-optical part of torsional braid
pendulum displacement transducer.

position. The current that drives the galvanometer is proportional to the
pendulum displacement and is taken as the output of the transducer.

In figure 2 the light source (14) can be placed so that its filament is
vertical. With power off, the galvanometer window (16) is at right angles to
the optical axis. The lens (18) collimates the light source. The focusing
lens (1l1) was chosen so that the light beam covers less than half the diameter
of the second window (24). The light beam is brought to focus on the photo-
cell (26) by moving the photocell support (3) in or out. The pendulum is made
long enough so that the window suspended from it is approximately centered with
the optical axis. Initially, the pendulum window is perpendicular to the opti-
cal axis, and the small permanent magnet (25) is aligned parallel to the optical
axis and perpendicular to the field produced by the step coils (19) and (27).
When energized, the coils give the pendulum an initial angular offset. Deener-
gizing the coils allows the pendulum to freely oscillate. When this occurs, the
focused lamp filament image starts to move across the differential photocell
(26) producing an error signal. This signal is fed into an electronic circuit
which drives the galvanometer in the same direction as that of the pendulum




window to cause the light spot to remain at nearly the null position on the
photocell. (The galvanometer moves in the same direction as the pendulum window
because of image reversal through the lenses.) With a symmetrical optical sys-—
tem, the galvanometer tracks the pendulum in a one-to-one ratio. A voltage pro-
portional to the current driving the galvanometer is the transducer output.

Figure 3 is a schematic of the electrical circuit. The filament supply on
the lamp is voltage regulated below its rated value to maintain the filament at
a fixed operating condition and to give it long life. The manual step switch
energizes the coils which produce the initial torsional displacement of the
pendulum. - However, over a wide range of braid torsional stiffness, a change in
the permanent magnet may be necessary to obtain the desired angular offset.

The step B input is for remotely initiating the pendulum oscillation.
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Figure 3.- Overall wiring diagram.



Figure 4 is the wiring diagram for the electronic circuit. The error sig-
nal from the photocell is fed into operational amplifier Al. Circuit gain is
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Figure 4.- Wiring diagram of the electronic circuit.

controlled by the 10-k{ potentiometer which is adjusted to give the maximum gain
with acceptable stability. From there, the signal goes to amplifier A2 which 1is
coupled to two transistors. Together these act as a power amplifier supplying
the galvanometer. The remainder of the circuit, to the right of the 3A line and
below the dotted line, is essentially concerned with the mechanism for initiat-
ing the angular offset and with the motor control for maintaining the average
position of the pendulum.

The current flowing to the galvanometer is directly proportional to the
pendulum displacement. A voltage which is obtained linearly from the galvanom-
eter current is fed into amplifier A3, into amplifier A4, and into the motor
circuit. Amplifier A3 receives a signal which is proportional to the pendulum
position and inverts its phase 180° without gain. Amplifier A4 needs only the
ac component of the signal since it is a differentiator whose output is propor-
tional to the pendulum angular velocity. Its output is phase shifted 90° and
provides damping when these signals are summed at the input to amplifier AS5.
This damping only acts when the step coil is energized and is used to damp out



any oscillations in the initial offset. The 10-k{l potentiometer associated
with it gives damping control. The 50-k{} potentiometer biases the direction in
which the pendulum will be offset and acts as an adjustment to obtain a desired
initial offset. Amplifier A5, in conjunction with its transistors, acts as a
power amplifier supplying the coil.

A motor system; to which the pendulum is mounted, offers a method of main-
taining the average pendulum position. This is accomplished as follows. When
the contacts are open (that is, the relay and step coils are not energized), the
motor maintains the pendulum at its average null position. The response of the
motor is so slow that it does not respond to the normal oscillations of the pen-
dulum. When the coil and relay circuit is open, the field effect transistor
(FET) acts as a low resistance, and amplifier A6 drives the motor. The motor
operates at a low power requiring 12 volts and 2 mA. Then a switch closure or
TTL (transistor-transistor logic) logical zero is applied across pin 6A to the
ground; this closes the relay which energizes the step coils and biases the FET
to a large resistance state. This inhibits further motor operation. The step
coil, however, is now energized and its field acting on the permanent magnet on
the pendulum causes the pendulum to displace through a specified angle. This
specified displacement is obtained by summing three signals at the negative
input of amplifier A5. These signals are obtained from the 50-k{! potentiometer,
from the actual displacement of the galvanometer, and from the angular velocity
of the galvanometer (controlled through a 10-k{! potentiometer) which provides
damping in the step mode of operation.

The two diodes across the gate and the drain of the FET limit the voltage
to a maximum of about 0.5 volt. This keeps the FET resistance within a reason-
ably linear range.

DESIGN CONSIDERATIONS

In this section, design considerations are described which led to this
particular design of the torsional braid pendulum displacement transducer.
Important requirements for the light source are that the part of the filament
forming the image on the photocell lie in a plane, that its position not shift,
that it have long life, and that it have a constant intensity to prevent an
apparent image displacement because of filament inhomogeneities or filament
stress distortion. An incandescent filament lamp with a voltage regulator sup-
plying a stable, underrated lamp voltage fulfilled these needs.

The next consideration is the lens and window optics. If the system is
nonsymmetric, that is, unequal image and object distances, the two windows have
different sensitivities in generating the beam displacement. This may be desir-
able when the range of swing desired from the pendulum has to be different from
that of the tracking sensor. However, the combined distance of object and image
is minimum when they are equal. Shorter focal length lenses, for a given diam-
eter, collect more light and result in a more compact design. However, as the
focal length becomes shorter, the refractor window causes more broadening of the
line source, in the focal plane. This broadening does not cause any problems,
since the photocell responds to the average intensity value.
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For much more control and ease of setup, a two-lens system, with one
acting as a collimator, was chosen. Since the optics preclude placing the
refractor windows in the collimator space between the lenses, one window is
placed in the object space and the other in the image space. Their placement
is not critical provided that they always pass the entire beam. A typical sym-
metrical setup of an optical system showing image broadening and displacement
of the image by the refractor window is shown in figure 5.

n=l.5

FOCUSING - COLLIMIs\TING
LENS \E" 0=15.00° ©=9.936°
WINDOW #2
WINDOW #|
ROTATED d° WINDOW #2 THE QUTPUT ANGLES OF THE
S ® NON-ROTATED WINDOW #42

ARE THE SAME AS THE INPUT

I

Image deflection due 1o
window rotation

RV

_____________ ® !
N S
1
Window #1 would have to be '
rotated §°in the same direction AL
as window # 2 in order to null \
the signal
Figure 5.- A symmetric, collimated optical system showing

image formation through quartz windows.

Since a differential photocell was not available commercially, a standard
photocell was altered as shown in figure 6. It generates a differential voltage
at its terminals, which when fed to a differential amplifier results in an out-
put proportional to the light displacement from the null position on the photo-
cell. Reference 7 discusses the theory of the differential photocell.

The coils causing the field that produces the initial offset of the pendu-
lum are connected in series. The main consideration here is to limit the cur-
rent they draw from the power supply to a reasonable value. Since the handbooks
do not supply this coil design information, the formula is derived in appendix A,
with an example of its use. The coils react with a permanent magnet, located on
the bottom of the pendulum, to produce the initial offset. It is important that
this offset be repeatable so that the data reduction is made for the same initial
amplitude. This may be guite important if the damping coefficient is not con-
stant. Constant offset amplitude is provided over an extreme range of braid
rigidities by using three different strength permanent magnets and electrically
changing the coil field strength.
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A high torque galvanometer with good linearity and minimal hysteresis is
required, and one was obtained that met these criteria.

Since the magnetic fields associated with the galvanometer and pendulum
magnet may interact and cause instability, the tank (fig. 2) was made of soft
iron to act as a magnetic shield. It was also designed so that the gas for
heating the braid was baffled so as not to disturb the pendulum. A magnetic
stabilizer was also added to the pendulum to minimize perturbations which were
discovered after the transducer was designed. After the source of the perturba-
tions was finally isolated, the cause and effects of this problem were analyzed
and are discussed in appendix B.

In a damped dynamic system, the response is a function of the forcing fre-
quency, the natural frequency of the system, and the damping. Generally, it is
desired that the transducer follow the system oscillation as exactly as pos-
sible, that is, in phase, with equal or proportional amplitudes. The forcing
function is the pendulum motion with frequency of about 1 Hz and an exponen-
tially modulated amplitude. (Since an exponential input results in a constant
input-output amplitude ratio and a constant phase shift, the pendulum over short
time intervals and in the damping range of interest is essentially acting as a
sine wave input to the tracker transducer system.) A response curve for a sinu-
soidal forcing function is shown in figure 7. Clearly, the flattest response is
obtained for a damping coefficient of 0.707. This damping also gives the best
phase shift characteristics, but this consideration is relatively unimportant
since the natural frequency of the transducer which is essentially that of the
galvanometer (about 76 Hz) is much greater than the forcing frequency (1 Hz) and
very little phase shift occurs. Also, at this forcing frequency, there is con-
siderable latitude in choosing a damping coefficient that gives a relatively
flat response.

10



105

ouTPuT I 1 TT
INPOT - |f _
75t
7 I ++
651
=1 T TR
o1 A HEENNENEEENYEANEHER
0O\ 2 3 4 5 6 7 8 910 U 1213 141

FORCING FREQUENCY/NATURAL FREQUENCY

Figure 7.- Dynamic response curves for a damped, second order
system with a sinusocidal forcing function.

Hence, the system stability is considered more critical. In a closed loop
system, high gain is desirable. However, as the gain increases, the effective
damping decreases and a condition of instability may occur. The circuit sta-
bility can be investigated by obtaining the open loop gain versus frequency or
phase angle versus frequency. For a control system with a second order charac-
teristic, response peaking occurs at the damped natural frequency fg and a
90° phase shift occurs at the natural frequency f,- From this point the gain
rolloff approaches -12 dB/octave. 1If, in the open loop, the gain is greater
than or equal to 1 when a 180° phase shift occurs, the closed loop circuit is
unstable. A check of the response of the original circuit (fig. 8) showed that
it was unstable. 1In order to maintain high gain and stability, the circuit was
altered to use velocity feedback to stabilize the circuit. This approach was
unsuccessful; thus the circuit was modified to resemble a first order system in
its operational range, which has a -6 dB/octave gain rolloff, does not peak on
the gain, and theoretically has a 90° phase shift at infinity. The frequency
response of this system, shown in figure 9, is stable.

11
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PRECISION

Factors affecting precision are, first, those elements which cause a non-

linear output response for a given input and, second, the errors introduced in
the data reduction. As was mentioned, the errors from the light source were
minimized and these errors together with those from the lens system are
inconsequential. '

To determine what error is introduced by window curvature (nonparallelism

of the window faces), a calculation was made to see what curvature would pro-

duce

an error of 1 percent of full scale. Full-scale angular displacement of

the pendulum is *15°. For an incidence angle of 15°, the angle of refraction
through a window with refractive index of 1.5 is 9.936°, as shown in figure 5.

Thus,

the full-scale displacement of the light image caused by window refraction

is (d tan 15° - 4 tan 9.936°) where d, the window thickness, is 0.635 cm.
Therefore, the full-scale displacement is 0.0589 cm, and the l-percent full-
scale error is 5.891 x 10™% cm.

Figure 10 shows dimensions of the optical system for which the calculation

of error due to window curvature was made. All the curvature was assumed on

WINDOW

fe— d —

OPTICAL AXIS

Ny
D

90°-% INCOMING RAY

j 1.016 CM

Figure 10.- Diagram for calculating error caused
by window curvature.
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one side of the window. Index of refraction of the glass is assumed to be 1.5.
The angle 7 of the incoming ray can be described by

0.508
. _ 1
sin R (1)
0.508
tan ¢ = E (2)
V&2 - 0.2581
2
R - 0.2581
cos [ = (3)
R
> .508
c
R2 ~ .2581
where R 1is the radius of curvature. According to the simple relation
governing refraction, the angle £ of the ray refracted by the curved window
surface is
sin 1
___g - = (4)
sin (¢ 1.5
_ o:.—1 [5in T
3 sin ( 1.5 ) (5)
1 sin C.
1.5
£
sin2 C
2.25

The displacement n (fig. 10) is then

n=d¢tan L - d@ tan £ = d (tan £ - tan &) = 0.635 (tan ¢ - tan &)

(6)

14



Likewise, the angle 1n of the refracted ray exiting from the plane window:

surface is

sin (¢ - &) _ 1
sin n 1.5

1 1.5 sin (g - &)

n

Jﬁ; - 2.25 sin® & - &)

From equations (1) and (5)

sin (¢ - &) = sin I}in_l (94§9§) - sin”! (5%235)]

The displacement m (fig. 10) is
m = 1.016 tan n
From equations (6) and (9), the total displacement is
m+n=1.016 tan n + 0.635 (tan ¢ - tan £&)
For a l-percent full-scale error,

a 1.5 sin (T - &)

5.891 x 10°* = 1.016

2

Jl - 2.25 sin® (¢ - &)

+ 0.635 (tan T - tan &)

(7)

(8)

(9)

(10)

(11)

15



Substitution of equations (2), (5), and (8) in equation (11) gives

. . =1 (0.508\ . -1 sin T
1.5 {s:.n ]:51n (———R ) sin ( l_.5 ):l}

4

5.891 X 10 - = 1.016
1 - 2.25 {51n2 [snl_l (9%3*) - sin~ ! (Sin;‘:ﬂ}
sin ¢
+ 0.635 0.508 _ 1.5 (12)
JRz - 0.258 | sin® ¢
2.25

In equation (12), sin ¢ 1is required. From the following sketch, let

W2 + g2 = B2 (13)

(14)

x = % \JR2 - 0.258 (15)

16



Substitute equation (15) in equation (14) to obtain

-1/2
& _ +1(g2 - g2 4 0.258) (12\/R2 - 0.258)
dx 2 :

I
=
O
o0
0
o)

N

|
@)
N
U
@

Thus,

tan (90° - ¢) = gﬁ = 1.969\/R2 - 0.258
cos [ 2

: = 1.969 \JR® - 0.258
sin ¢

Substitute equation (3) in equation (18) to obtain

Jr? - 0.258 1 0.5079

SinC: = =

1.969R R
R(l.969)\,R2 - 0.258

Finally, substitute equation (19) in equation (12) to obtain

- .50 _—_ .
s {Sin [oin® (2:309) - a2t (2:3308
4

o))

5.891 x 10 - = 1.016
1 - 2.25 {%in2 [%in—l (9;§9§> ~ sin-l <o.33aeiI}
R R
+ 0.635 0.508 _ 0.3386
JR2 — 0.258 RJI _ 0.11465
2

For very large values of R, greater than 250 cm, equation (20) becomes

5.891 x 10 % = 1.524 {%in [%in_l (O';OS) - sin”! (94%55951} +

0.1076

R

Solving equation (21) for R results in R = 619.8 cm. Thus, a radius of

curvature of 619.8 cm corresponds to a l-percent full-scale error.
plano-convex lens

For a

(16)

(17)

(18)

(19)

(20)

(21)

17



1 1

1
== (n- 1)f=—- = (22)
F (Rl Rz)

where n 1is the refractive index. For 1/R2 = 0 and Ry = 619.8 cm, the
focal length is F = 1239.6 cm = 0.081 diopter.

The curvature of all the windows used in the transducer was checked with
an optical flat and red laser light with wavelength A of approximately
700 nm (see sketch). The applicable equation is

JZ(S.H.)R - (s.H.)?

7.00 x 107> 7.00 X 1072 2
= ty? ";___?fa——_”>R'" _;_—_7?_——“_> (23)

53
]
1+

R=6I9.8 CM

_
PN

OPTICAL FLAT—/

where Y is the distance to the first dark interference ring when the sagittal
height (S.H.) is A/2. The transducer windows were at least twice as flat as
those that produced a l-percent full-scale error. Thus, the radius of curva-
ture of the transducer windows was greater than 1239.5 cm. Calculating error
due to window curvature for this value of R (eg. (21)) results in a maximum
full-scale displacement error of 2.946 X 10™4 cm or 0.5 percent.

When data reduction is performed as recommended, the nonlinearity of the
photocell and electronic system output would give insignificant error. The
error in the peak values of torsional displacement 6 used in the computation
would conservatively be less than *#0.5 percent. Thus, the total fractional
standard deviation of the mean in measuring 6, the initial torsional amplitude,
is

o
)
=2 \ﬂO.S percent)2 + (0.5 percent)2 = 0.707 percent (24)

%
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The basic equations used in data reduction are derived in appendix C, and
the method of obtaining damping coefficient from measurements of three succes-
sive peak amplitudes is described in appendix D. The damping coefficient is
defined by equation (C21l) to be

Vl + a2

where a 1is calculated according to equation (D15) as

1n (99—:*gl>
61—62

a= om (26)

where 60, el, and 82 are three successive (all positive or all negative)
peak amplitudes of the system response curve, as seen in figure 11l.

rrererererrrrrrrr ettt

Lo
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(NORMALIZED) |

K
l
|

DAMPING COEFFICIENT,C=.07

9 . 0 12 14 6 0 22 24
TORSIONAL ANGLE, w't,——RADIANS

Figure 1l.- Torsional amplitude versus time plot of a damped,
second order, fully oscillating torsional system.
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The damping error based on the measurement of three successive peak

amplitudes is now computed as follows

2
-a“ da da da
dc = + = (27)
3/2 1/2 3/2
(1 + a?) (1 + a?) (1 2)3/
da da da
da = == d8,. + =— db, + =—— db
860 0 361 1 862 2
B 6, - O 6 - 6
1 0 2 0 1
= - +
2ﬂ(60 =6 d@o <91 - 92>d81 (91 — 62)d62 (28)
B 2 2 1/2
o, = 1 02 + (60 62> 02 + (60 _ 61> 02 (29)
- - 0 - 6 —
a 2ﬁ(90 61)-_ 0 Gl 62 1 61 62 92
> 1/2
dc da(l + a“) da
© - 3/2 2 (30)
(1 + a2) a a(l + a7)
6. - 6 6., - 0
1 0 2 0 1
_— - +
d
ac _ (31)
8, - 6 8, - 6, \]°
1 < 0~ V1 1 < 0 l)
n n
6; - 6 I 6, - 0,
1+
2T 27
J
In equation (31), it must be remembered that d@o, del, and d82 are
independent errors even though their amplitudes are dependent on 60. If all
the errors are of the same magnitude and sign, then the error dc/c 1is O.
This is not a very reliable estimate of the error. The maximum error would
occur when df; is opposite in sign to d6y; and dB,. The standard deviation
of the mean, which is independent of sign, is always preferable for giving the

precision and accuracy of the measure
calculation.
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Let ny be the fractional "overshoot"; then
1/2
2 2
g 4 - 2
B9 1 -ny 212 1 -ny 4\2
1+ (- (nl ) + ny )
2m04(1 - n 2 2 _ n 4 n 2 _ n 4 '
o, 0 1 n 1 1 1
- : 5 (32)
2 2
1 - n,? 1 -n 2
1n L 1 L
2 4 "\ a
nyp - o3 ny n
1 +
2T 2m
( 3
1/2
o Og 21/2(l +n 2 +n 4)
C 0 1 1
=~ =73 (33)
© % L2 )
in ——
1 n12
(l - nlz) 1n —\|1 +
n2 27
N 1 S
A practical range of damping coefficients ¢, taken from reference 1,
is 0.015 to 0.50. For c¢ = 0.50, the overshoot of alternate peaks is approxi-
mately 16 percent, and for ¢ = 0.015, the overshoot is 95.4 percent. Calcula-
tion of maximum error for ¢ = 0.50 with Oeo/eo = 0.707 percent is
- ~N
) 1/2
(o] ¢] 1/2 . 2 4
c__0 2770 + 0.16% + 0.167) = 0.212 percent (34)
C 60 2
1
In —
(1 - 0.162)(ln L > 14+ \—09-16
2m
L 0.16 )
and the maximum error for ¢ = 0.015 is
r 3
o) 1/2
o 6 1/2 2 4
+ . + .
e .0 2" ({1 +0.954 *+0.9347) = 195 percent (35)
c 8 2
0 1
g n ]|
0.954
(1 - 0.9542) 1n-——5——5 1+ 2:5
0.954
. A
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Although a 195-percent relative standard deviation may seem large, it does
approach infinity as ¢ approaches zero. At that point, J./c becomes
indeterminate. For the example given, ¢ = 0.015 * 1.95(0.015) results in
0.044 as the upper limit and -0.014 as the lower limit. Since negative damping
does not exist, the lower limit is zero. Thus the bounds of the damping are
from zero to 0.044 with a most probable value of 0.015. As damping increases,
Oo/c decreases. If three alternate peaks rather than three successive peaks
were used, the reader can verify (from eq. (D16)) that Gc/c would be greater
than the three-successive-peak method by a factor of

5 172 (36)
(nl - nl + l)
This factor has a maximum value of 4.0 for ny; = 1.0.
The rigidity or torsional spring constant K is given by equation (Cl14)
as
2
= 4W2J + c2w2J
T
2
= g0 1+ —— =Jw'2—l——2> (37)
(L - c©) 1 -c

where J 1is the torsional moment of inertia, T is the period of oscillation,
and w and ®' are the natural and damped angular velocities, and where
(egs. (C1l0) and (C13))

1/2
2)/w

w' = (1 - ¢ and w'T = 21 (38)

The error dK can readily be obtained as was demonstrated previously for dc,
by taking

_ 9K oK . 9K
dK = == dJ + 7= dw' + = de (39)
or
1/2
2 2 2
K 2 oK 2 oK 2
OK = lj(—a?> oy *+ <_8w ) Ow, + <§5> Oc] (40)
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From equation (37),
InK=1InJ + 2 1n w' - 1n (1 - cz) (41)

For the relative error,

]
K 43, pdw, 26 de (42)
K J w' 2 c
l1-c¢
or
1/2
Ok 95 ’ Ty 2 c? 2 O¢ 2
) a2
K J w' 2 c
1 -c
Torsional amplitude can be given by
TOL
=5 (a4)
A

where T, 1is the torque in the torsional member of length L, G is shear
modulus, and J, is the polar areal moment of inertia of the torsional member.
Then, since To/e = K,

G=5—=—""= L (45)

For the relative error in shear modulus,

InG=1InJd + 2 1In w'" - 1n (1 - c2) + ln L - 1n JA (46)
' 2 daJ
a6 _ar  ,dw . 20?2 dc, dn_ ¥ @
G J w 1 - 02 C L JA
or
5 1/2

o a5\2 O \2 2 \2 2 o, \? %
_G = _J> + 4 L + 4 L <o_c> + <_I.'.> + | - _5_ (48)
G J w' 1 - &2 c L Ja
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DISCUSSION

The optical system utilizes a newly invented technique for which a patent
has been obtained (ref. 6). This consists of the refracting gquartz windows
used in conjunction with the differential photocell for producing a null signal.
The error contributions from these components can be controlled to insignifi-
cance, with no undue demands made for their fabrication. This factor together
with the null signal method of obtaining output, which is probably the most
advantageous in transducer design, contributes to producing an optimal trans-
ducer package. An analysis of the electronic circuit did not predict quirks
that developed during laboratory testing, and numerous additional tests were
made to optimize the design.

One of the quirks that appeared, which could not be eliminated by design,
was a modulation which occurred on the decay curve envelope. A basic analysis
isolated the cause to any system with torsion in it that had nonstraight-1line
coincidence of the torsional and physical axes of its torsion member. This
produces a time variation of the torque in the torsion member and a time vary-
ing coefficient of the angular displacement in the differential equation of
motion for the system. This time variation causes the modulation of the
envelope. In a flexible suspension, one of the most likely causes for mis-
alignment of the torsional and physical axes is rigid end point fastenings.
These are the most commonly used in practice, and they cause axial misalignment
of the suspension when it is nontorsionally perturbed. Relatively unrelated
transducer systems such as those using vibrating wires with clamped ends for
measuring angular rate have produced odd outputs which can be explained by this
analysis, since some torsion inadvertently is built into the fixed end point
fastenings. To minimize or prevent the effects of axial misalignment, care
should be taken to ensure that the torsional member axis is straight. TIf end
pinning devices are attached to it, these should be made colinear with the
axis. The end fastenings may also be made rigid to torsion but soft to plane
motion. Finally, unless a perfect end fastening is used (which is unlikely),
some form of stabilizer should be used to prevent perturbations from bending
the torsional axis.

The detailed error analysis which was performed was for the purpose of
producing a precise and accurate transducer. However, the results of this
effort can also be used for selecting the method or methods which give least
error in the data reduction and for explaining why more scatter occurs over one
range of the data than over another. Also, until now, it has been believed
that obtaining G, the shear modulus, of the composite structure of the polymer-
impregnated braid used for the torsional suspension was not feasible. In equa-
tion (48), which gives the relative error of G, all factors contributing to
the relative error can readily be determined with the exception of dJA/JA'
where Jp is the polar areal moment of inertia. Cross sections of the
polymer-impregnated braid can be obtained by methods similar to those used in
getting tissue or metallurgical specimens. From these, it is assumed, on a
statistical basis, that a most probable areal configuration may be obtained.

It would then be a simple matter to obtain the areal moment of inertia of the
composite constituents, the relative error of G, and G itself of the com-
posite braid. By superposition, the G value of the polymer only could then
be determined.
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Another factor of interest is the initiation of the free torsional oscil-
lations of the pendulum. 1In order to guarantee repeatability of results and
avoid introducing a forcing function into the initial conditions of the pendu-
lum release, the initial starting amplitude, as measured from the average pen-
dulum position, should be kept constant and held sufficiently long that its
constancy is beyond doubt. Release should then be sharp and should introduce
no perturbations. The release mechanism in this transducer meets all these
criteria.

CONCLUDING REMARKS

An improved torsional braid pendulum transducer has been designed which is
considered an advance in the state of the art. The transducer has been
described and its precision and accuracy have been analyzed. This research
has resulted in the following findings:

1. Any torsional system, or system with torsion in it, having misalignment
of the torsional and physical axes of its torsion member experiences a time
variation of its torque output when the system is in the dynamic state. This
results in a time varying torque in the torsion member and a time variable
coefficient for torsional amplitude in the differential equation of motion for
the system. The result is a modulation of the normal output of a freely oscil-

lating, torsional system. To minimize these effects in flexible torsion mem-
bers, which are normally undesirable, care should be taken to ensure that the
torsional member axis and its end pinning devices are colinear. A suspension

system that is rigid to torsional motion but soft to plane motion may be used.
Some form of stabilizer to prevent perturbations from bending the torsion mem-
ber axis should be used.

2. The step input for exciting the torsion pendulum gave a smooth, crisp
release from the same starting amplitude.

3. The null method employed in this transducer for obtaining the output
makes it virtually insensitive to any but torsional motions.

4. The maximum relative error (due to window curvature) in the torsional
amplitudes for this system is 0.7 percent. This results in relative errors in
the measurement of the damping ratio ¢ of 195 percent for ¢ = 0.015 and
0.212 percent for ¢ = 0.50; this error decreases as the damping ratio
increases. Since rigidity and shear modulus are dependent on ¢, more scatter
in the data should be expected at the lower values of ¢ for all three
parameters.

5. To minimize error in data reduction, it is recommended that three suc-—
cessive (all positive or all negative) peaks be read out.
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6. Making the windows optically flat to one-guarter of the wavelength of
sodium light would make them a negligible source of error. The main source of
error would then be the readout of the successive peak amplitudes, and any
means to improve their accuracy would directly enhance the accuracy and pre-

cision of the quantities sought.

Langley Research Center
National Aeronautics and Space Administration

Hampton, VA 23665
February 25, 1981
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APPENDIX A

COIL DESIGN

The design of the torsional braid pendulum displacement transducer
colls which cause the field that produces the initial torsional offset.
main consideration in designing the coils was to limit the current they
from the power supply to a reasonable value. The formula for designing
coils is derived in this appendix.

A coil is desired with a given resistance and the dimensions shown
following sketch:

N

(D + 4) _

_D. - — —
—i~—C) Q n=1
e L e
n=3 .114 cm
D
l=2.134 cm
D= 1.016 cm 2.54 cm

For the first layer of wire,
l . .
m(D + 4) a- Length of wire in layer 1

For the second laver,

Q]

m(D + 3d) = Length of wire in layer 2

For the nth layer,

included
The

draw

the

in the

(AL)

(A2)

D + (2n - 1)é]é-= Length of wire in layer n (n=1,2,3,...) (A3)

From eqguation (A3), an arithmetic progression is obtained whose sum is

_N l z
S—-Z-{N(D+d) E+w[o+ (2N - l)d]d}

_ Nml _ Nml
= 53 (2D + 2N4) = ~af4D + N4)

(n4)

(A5)
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where N 1is the number of layers in the coil. This sum is the total length of
wire of diameter d in the coil. For the coil dimensions in the sketch,

B K g + 6.704N> (A6)

d

The diameter of the coil is also limited to 2.54 cm, that is,

2.54 2 2Nd + D

2.54 Z 2Nd + 1.1016 (A7)

A coil with resistance of about 55 § is desired. Try wire with
d = 0.0254 cm, which has a resistance of 110 2 per 32 004 cm or 55 { per

16 002 cm. From equation (A6)

_ 6.811 2 _ .
S = io;eg N * 6.704N 16 002 (A8)
6.704N% + 268.2N - 16 002 = O (A9)

Equation (A9) can be solved for N, which to a whole number is 33 layers.
However,

2Nd + 1.1016 = 2(33)(0.0254) + 1.106 = 2.69

which violates equation (A7). Therefore 0.0254-cm-diameter wire 1is too large.

Try 32-gage wire with a 0.02032-cm diameter and resistance of 167.3 Q
per 30 480 cm. To provide coil resistance of 55 §), 22 layers were required.
This resulted in a coil diameter of 1.91 cm, which was acceptable. The total
number of turns is calculated as follows:

L _2.134 = 105 turns/layer

d ~ 0.02032

105 x 22 = 2310 turns

28



APPENDIX B

PERTURBATION CALCULATIONS FOR THE TORSION PENDULUM

This discussion deals with the factors that affect the normal, regular
decay curve of the damped oscillation of a compound torsion pendulum and the
output of any system which is put in torsion and whose torsional axis becomes
bent or deflected. A simple pendulum is first examined, and the final develop-
ment is for the actual compound pendulum that is used in the transducer design.
Consider a simple pendulum in torsion as is shown in sketch (a). If the axis of

ol A7,

Sketch (a)

this pendulum is always a radial extension from the pin point, any torsional
motion given to the pendulum would not be changed by any perturbation that dis-
placed it from its statically stable position. This sort of suspension can be
approached by using a very flexible diaphragm as the pin point for the pendulum
suspension. This diaphragm is rigid to axial torsion and soft to moments at
right angles to this torsion. Further, no linear forces acting on the center

of mass can produce or change the torsion. The more usual situation is that the
pin point is rigid and a perturbation producing a deflection of the axis changes
the distribution of the torque from what it was previously. This results in
modulations and other effects on the oscillation of the torsional pendulum

(fig. 12). To illustrate the point, one mode of torque distribution is developed

Paper speed ~ 41.3 sec/cm
+~

H4+H H

.

e

1
11

FHHAH

RNEA

T
T

?]F.—._

T HA

Figure 12.- Decay curve envelope modulation due to
perturbations to a torsional pendulum.
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APPENDIX B

sufficiently to show ‘that the output is modulated. A second, more general
torque distribution mode analysis is outlined, but the detailed solution is not

made in this paper.

Depending on the torsional spring constant and the pendulum inertia, the
torque can distribute itself as shown in sketch (b). The parallel component T”
is Ty cos P and the normal component Ty is
Ty sin Y. For small angles, the parallel component
is much larger than the normal component, and
7 although this development is for the parallel com-
ponent only, the normal component of torque also

V; T contributes to the perturbation of the output, since
Ty _>k it causes rotation of the pendulum. The torsional
‘; spring constant is K = GJa/L, and may be assumed
N constant because the effective length L under
Sketch (b) deflection remains essentially constant as does G,

the shear modulus, and Jp, the areal moment of
inertia. The bending stresses and strains, however,
do have an effect on these parameters and cause coupling or interactions which
are not well understood and were ignored in these calculations.

Assume that the pendulum is in torsion and receives a perturbation which
moves it off axis to an angle Y. Since the pendulum oscillates because of
this, Y is a function of time. The parallel component of torsiocn T” is
dependent on VP, and since this is the torsional spring torque in the differ-
ential equation of motion of the system, it changes the torsional amplitude 6
from that obtained with the pendulum in axial alignment. This change, of
course, is an error which should be eliminated. The normal component Ty moves
the pendulum mass normally to the plane of the paper or in a conical motion.

The change of Y with time prevents a conical path but not the normal rotation.
This motion also affects the output to produce an error which can be eliminated
in the same way as the error due to the parallel component is eliminated.

For free oscillation, the differential equation now controlling 6 in the
offset axis, considering the parallel torque component only, is

J6 + 26 + T, = 0 (B1)

The design of the transducer called for a suspension which results in a
compound pendulum. The following development for obtaining 6 with perturba-
tion for this situation is general until the algebra becomes too cumbersome and
then actual values, taken from the designed pendulum, are used. Assume that a
torsion Ty has been induced at point B in sketch (c) and a perturbation pro-
duces Y and ¢. Then, TII which produces the torsional oscillation is

Ty cos ¥ cos (¢ - Y).
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Sketch (c)

The conservative Lagrangian is now set up. The only effect of the damping
force is to reduce Y and ¢ more quickly; it does not alter the argument that
modulation occurs. Thus, it is omitted in the following determination of Y
and ¢. The position of the center of gravity (point G) in terms of the coor-
dinate system shown in sketch (c) is

bd
|

= L, sin ¢ + L, sin ¢ (B2)

=
i

Ly cos y + L, cos ¢ (B3)

The velocity components of the center of gravity at point G are

"
i

Lj (cos w)¢ + L, (cos ¢)$ (B4)

"
I

~[Ey tsin 0 + 1y(sin 14 (B5)
so that the velocity vg of point G is
5 . a2 ) . _ A2
vge = [;l(cos my + L,(cos ¢)§] + [}Ll(51n Y)Y - Ly(sin 9)o (B6)
The kinetic energy of the pendulum is
2 1 *2

1
T=5va +—2‘IG¢
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where m is the pendulum mass and I; is the mass moment of inertia about an
axis through the center of gravity and perpendicular to the rod. Substituting
equation (B6) results in :

22
; -2 . A2 Igd
T = % {[Ll(cos Y)Y + L, (cos ¢)cﬂ + [Ll(sin Y + Ly(sin ¢)¢’] } + G2

v 2
. . -. I
- %{L12¢2 + 1,%6% + 211, [cos (¢ - w)]w} + G2¢ (87)

To keep Ig general in terms of m and Ly, let
nmL22 = IG
where L2 = 25.96 cm, I = 4935 g—cmz, and m = 38.7 g. Then,

n = 493> = 0.189

38.7(25.96)

Substituting I = O.l89mL22 in equation (B7) gives

T = —‘;l{lelbz +1.190,%%? + 21,1, [cos (¢ - wﬂqu}} (B8)

The potential energy of the system relative to its equilibrium position is
vV = mg[(Ll + Ly) - ?] = mg[?l(l - cos P) + L2(l - cos ¢ﬂ (B9)

where g 1is the acceleration due to gravity. By considering oscillations
caused by small displacements, cubed and higher order terms are eliminated, and
since

L - (9% - 200 + ¥?)
2

cos (¢ - Y) = + .
equations (B8) and (B9) become
_m 232 2:2 ..
T = 5<Ll Yo o+ 1.19L,7¢ 0 + 2L1L21pd>> (B10)
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_mg(. 2 2 - -
V=3 (Ll“’ + Lyo ) (B11)

Consider the Lagrangian, ¥ =T - V, with generalized coordinates Py and ¢
represented by Ayt

_g_t ?. _ %%2_ -0 (B12)
dy 4, - .
which may be written as
()
q
r] WV __ (B13)

dt da,

since —BV/BC'Ir

0 and BT/Bqr = 0. Differentiate equations (B10) and (Bll)
to obtain

_2_3 ) g(lezd’ + 2L L,0) = m<L12‘i’ + LyLy0) (B14)
% = —2[1.19(2)1422&) + 2L1L2LI)] = m(1.190,2% + Ly1,0) (B15)
g—z = Th(21q¥) = mgLyy (B16)
g—g = —“‘2—9(2L2¢) = mgL,¢ (B17)

Equations (B1l4) to (Bl7) substituted in equation (Bl13) give the equations of
motion:

%E m(L12¢ + Lleéi] + mgL, ¥ = 0 (B18)
d 2: .
E[m(l'lng ¢ + L]_Lzll)):] + mgLop = O (B19)
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From equation (B18),

Ll{[) + L2215 +gP =0 (B20)
From equation (B19),

LY + 1.19L,6 + g¢ = O (B21)

Equations (B20) and (B2l) give

2 2
Lip” - g L,p

=0 (B22)

2 2
Lip l.l9L2p - g

where the p's are the angular frequencies of the principal modes of oscilla-
tion. Thus, from equation (B22),

1

0.19LjL,p% - (L; + 1.19L,)gp? + g2 = 0

where p is

(L; + 1.19L,)g * \J(Ll + 1.19L,)%g2 - 4(0.19)LyL,g?

2
p =
1,2 2(0.19L,L,)
(L; + 1.19L,)g % \/legz + 1.62L1L,g° + (1.19L,) %G
= LT (823)

From equation (B23), it can be seen that both roots are positive. The periods

are then

2T
17 p

1

2T
2 P,
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where p; and p, are the positive roots of p12 and p22. The angles

12

and ¢ are still needed. Therefore, subtract equation (B20) from equation (B21)

to get
0.19L,¢ + g(dp - ¥) = 0

P 9. 4 - 5.269Y _
¢ + 5.26 Ty ¢ L, 0

Multiply equation (B20) by 1.19 and subtract equation (B2l) to get

" gy g
+ 6.26 2= - 5.26 = ¢ =
Y 6.26 I, 5.26 L, ¢ o]
In operator form, equations (B26) and (B27) are

2 4 G\y _ 9 =
(D 5.26 L2)¢ 5.26 L Y =0

-5.26 2 ¢ + (DZ +6.26 2\Y =0
Ly Ly

The determinant of equations (B28) and (B29) is

2 g g
p?2 + 5.26 < -5.26 -2
L, L,
A:
-5.26 2 D2 + 6.26 =
L, L,
Let 5.26 - = M; then
Ly
A=p%*+ [6.26 L + m\p2 + mMf6.26 L\ - M[5.26 L=
L, L, L,

pd + (6.26 g M)DZ £ M fl
Let N = 6.26 - + M; then
Ly

p4 + np2 + M9

[>g
I

(B26)

(B27)

(B28)

(B29)

(B30)

(B31)
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For both ¢

where r is

At this point
equation (B34

L1
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0 -M
+ ND2 + E)(b =
1 2 g
0 D¢ + 6.26 —)
Ly
Ly
D2 + M 0
+ NDZ + %g>w = =0
1
-5.26 = 0
Ly
+ Np2 4 Mﬁ)w -0 (B33)
Ly
and VY,
+ar2 + M9
Ly

a characteristic root. . Then

2
Nzt |N2-4M (-M - 6.26 iL) + \/(6.26 g . M> -2 M9

5.26 6.26) . [39.2  4a.8  27.7
- o * + +
L, Ly 1,2 Lilp 1,2

= 5 (B34)

the following actual pendulum values are substituted into

):

21.84 cm

I

I

25.96 cm
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(_ 5.26 _ 6.26 ) N 39.2 44.8 L 27.7
25.96  21.84 (21.84)2 (21.84) (25.96) (55 9g)2

r2 = 980 5
_ 980<—O.489 ; 0.202) (B35)
r,? = -338.6
r22 = -140.6
r) = $18.4i (B36)
r, = +11.9i (B37)

Equations (B36) and (B37) give the solution to the differential equations.
Since there is no particular solution, let

D= o184t 4 o o (F18.40)E 4 ¢ J(LODE | ¢ o(-11.90)¢ (B38)
b= ae(18-40E L g ((F18.40)E | g [(11.99)E | g (-11.94)¢ (839)
Differentiate equations (B38) and (B39) to obtain
b = cle(18.4i)t(18_4i) + Cze(—18.4i)t(_18_4i)
+ogeM9DE g g5y 4 g e THIDE (11 94 (B40)
b= e 184IE ) 15,02 4 cze(—18.4i)t(_l)(18.4)2
+oge Oty (11.9)% + e T E1) 11.9) 2 (B41)
¢ = a,e18-41)%18.44) + dze(‘18-4i)t(—18.4i)
+ dge (M- 7 o4y + d4e(—ll‘9i)t(-ll.9i) : (842)
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(18.4i)t (-18.4i)t
e e

2 .
g o(-1l.oi)t

¢ =a (-1) (18.4)% + a (-1) (18.4)°
(11.91)t
d3e

+ (-1) (11.9)°% + (-1) (11.9)° (B43)

Substituting equations (B38), (B39), and (B43) in equation (B26) gives

(11.9i)t
e

(184108 1g 432 _ g (F18-41)T 15 42 _ g (11.9)°

1 2 3
[é e(l8.41)t + 4 e(—18.41)t + 4 e(ll.91)t
4 L1 2 3

(-11.9i)t (18.4i)t (~18.4i)t (11.9i)t (-11.92i)t
4e - cle - cze - c3e -~ c4e =0

-d

_a eIt 4y 5)2 L 5 06 fl

+ d
(B44)

Substituting equations (B38), (B39), and (B41l) in equation (B27) gives

(11.9i) ¢t
e

e o184t 15 4y L o ((TIBALIE 15 42 ¢ (11.9)°

1 2 3

s o(1loE 1 g2 6_26_3;[ (18.4i)t _(-18.4i)t
4 Ly L1 2

JAloide | (-ll.oiye]] | o o Jl{; o (18.41)¢t
3 4 L, L1

2e(—18.41)t N d3e(11.91)t N d4e(—11.91)€] _ o (B45)

+ C

+ d

Equating equations (B44) and (B45) gives

(11.9i)t
e

8.4t L 02 g (F18.4DE L 02 (11.9)2

1 2 3

_ d4e(—ll.91)t [?le(l8.4l)t . d2e(—18.41)t N d3e(11.91)t

-d

(11.9)% + 5.26 -
Ly

(-11.9i)t (18.41i)t (-18.4i)t (11.9i)t (-11.9i)¢t
4 - ce - cye - cge - cye

(11.9i)t
C3€

+ d

o o (18-41)E (11.9)2

1
Lo PILOE ) g2 e 411} (18410t | (-18.4i)t
4 L L1 2

Sl E | (-1L.oi)E] | o Lo gy (18.4i)t
3 4 L, 1

(18.4)% - c2e(_l8'4i)t(18.4)2 -

+ C

J-18.4he o (A1.90)e e(—11-9i)€] (B46)

+
d2 3 4
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From equation (B46),
~18.4)2a. +5.26 3 a. - 5.26 L ¢, + (18.4)°%¢
1 L _ 1

2 1l L, 1

- 6.26 2 . + 5.26 2 d:‘e(l8.41)t .

L, 1 L, 1
-338.64, + 198.6d, + 236.0d; - 198.6c; + 338.6c) - 280.9c; = O
140.9¢,
dl = -———9'6—'— = 1.47C1 (B47)
From equation (B46),
—as.a)%d +5.26 L a. - 5.26 L o, + (18.4)%
. 2 =26 - 9 =26 7% : 2
2 2
- 6.26 L ¢+ 5.26 il—d:}e(_18'4l)t =0
L. ©2 . 92
1 1
-338.6d, + 198.6d, + 236.0d, - 198.6c, + 338.6c, - 280.9c, = 0
d, = 1.47c, (B48)
From equation (B46),
- 2 9 _ 9. 2
[‘(11.9) 4, + 5.26 £-dy - 5.26 1= cy + (11.9)7c,
2 2
- 6.26 L o +5.26 L q |Vt
L, 3 L. 93
1
-141.6d; + 198.6d, + 236.0d, - 198.6c5 + 141.6cy - 280.9c, = 0
dy = 1.15c, (B49)
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From equation (B46),

[}(11.9)2d4 +5.26 23 - 5.26 fl-c

2
+ (11.9)7c -
L, 4 5 4

4

4 L

- 6.26—g—c + 5.26_9_6 e("ll.9l)t= o
Ll 1 4

—l4l.6d4 + l98.6d4 + 236.Od4 - l98.6c4 + l4l.6c4 - 280.9c4 =0

d4 = l.15c4 (B50)

From equations (B47) to (B50), only four arbitrary constants remain; these
inserted in equation (B39) give

¢ = 1'47Cle(18.41)t + 1.47c2e(—18-4l)t n 1.15c3e(ll.9l)t

+ 1.15c4e(_11‘9l)t (B51)

The c¢'s are now evaluated.

At t = 0, an initial offset is assumed as shown in sketch (4):

b, = 9, (B52)

Sketch (4)

(Note that the most general initial condition should be wo # ¢o which would
make the derivation unwieldy. The assumed condition fregquently occurs.) Sub-
stituting these values into equations (B38) and (B51) results in

Lpo=cl+c2+c3+c4 (B53)

¢, = 1.47c; + 1.47c, + 1.15c5 + 1.15¢c, = ¢ (B54)

(o]
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Differentiating equations (B38) and (B51) results in

11) = (18_4i)cle(18.4l)t _ (18.4i)c2e(_18'4l)t
+ (1.9i)ege THOHE L (11 g5y o (TH-ODE

¢ = 1.47(18.4i)cle(18'4l)t - l.47(l8.4i)c2e(‘l8.41)t
+ 1.15(11.9:'L)c3e(11-'91)t - 1_15(11.9i)c4e(—11.91)t

At t = 0, & = é = 0, so that equations (B55) and (BS56) become

l8.4cl - 18.4c2 + ll.9c3 - ll.9c4 =0

27.05C1 - 27.05c2 + l3.69c3 - 13.69c4 =0

From equations (B53), (B54), (B57), and (B58),

1 1 1 1
1.47 1.47 1.15 1.15
A = = -89.3
18.4 -18.4 11.9 -11.9
27.05 -27.05 13.69 -13.69
v, 1 1 1
Vg 1.47 1.15 1.15
0 -18.4 11.9 -11.9
0  -27.05 13.69 -13.69
¢y = 553 = ~0.235)_

(B55)

(B56)

(B57)

(B58)

(B59)

(B60)
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1 R 1 1
1.47 Ug 1.15 1.15
18.4 0 11.9 -11.9
27.05 0 13.69 -13.69
-89.3 T 0-23%%
1 1 by 1
1.47 1.47 N 1.15
18.4 -18.4 0 -11.9
27.05 -27.05 0 -13.69
T893 = 0.737Y
1 1 1 U
1.47 1.47 1.15 Us
18.4 -18.4 11.9 0
27.05 -27.05 13.69 0
593 = 0.737Y,

(B61)

(B62)

(B63)

Substituting equations (B60) to (B63) into equations (B38) and (B51) results in

<
i

-©-
il

Since

Ccos

42

-0.235¢ e(18'4l)t - 0.235) e(_l8-41)t + 0.7370 e(ll.91)t
+ 0.737y_e (TH DT (564)
.41 -18.41
1.47(-0.2359)e 184 E 11 47(-0.235y ) (T18-41)E
.91 -11.9j
+ 1.15(0.73711()0)8(11 9l)t + 1.15(0_737wo)e( 1 9l)t (B65)
it -it
= 5 (B66)
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equations (B64) and (B65) become

<
I

~0.470y_ cos (18.4t) + 1.474y, cos (11.9t) (B67)

©
Il

-0.691wo cos (18.4t) + 1.695y, cos (11.9t) (B68)
The output torsion is
T"= TY cos Y cos (¢ - 1) (B69)

Equations (B67) and (B68) substituted in equation (B69) give

T|l= TY cos [—0.470w0 cos (18.4t) + l.474¢o cos (11.9ta
X cos [}O.22lwo cos (18.4t) + 0.221lpO cos (ll.9tﬂ (B70)
where
TY = K6 (B71)

Equation (Bl), the differential equation for the perturbed condition, thus
becomes

J0 + 26 + KO {cos [;0.470wo cos (18.4t) + 1.47411)o cos (1l.9tﬂ

X cos [}O.ZZIWO cos (18.4t) + 0.221\1)O cos (ll.9t{]} =0 (B72)

Let
cos [&o.47owo cos (18.4t) + 1.474Y_ cos (ll.9t{] = cos £(t) (B73)
cos [-0.221y, cos (18.4t) + 0.221Y, cos (11.9t)] = cos g(t) (B74)

Thus, equation (B72), with the notation of the constants changed, becomes
8 + 20w + w20 cos £(t) cos g(t) = 0 (B75)

where ¢ = £/2Jw and W = \IK/ .
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The modulation frequency is slow relative to the oscillating frequency;
therefore, under these conditions, the Wentzel, Kramers, Brillouin (WKB) method
of solution (from ref. 8) can be applied to solve equation (B75). Assume that

0 = a(t) R (V) | (B76)
Then

5 = nipelP 4 ActP (B77)

5 = 2if(if)eiP + actPiB + A1BeiP + AipelP + RelP (878)

Substituting equations (B76) to (B78) into equation (B75) gives
A+ i(Aé + ZAB - Zicwé) + AEQZ cos f(t) cos g(t) - 32 + 2icwé] =0
(B79)
The expression in brackets in equation (B79) is arbitrarily set equal to zero:
52 . ; 2
B - 2icwB ~ w” cos £(t) cos g(t) =0 (B80)
Let

F(t) = w2 cos f(t) cos g(t)

(B81)
a = 2¢cw
With equations (B81) substituted in equation (B80),
<5 .
B™ ~ ialf - F(t) =0 (B82)
é=_i_.a’_+ __a_2_+F(t) (B83)
2 " 4
Since A 1is slowly varying, A still slower, and A= 0, the following is
obtained from equation (B79):
AR + A28 - ia) = O (B84)
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aB + 2A(B - %?) =0 ' (B85)

- B__,2a_ (B86)
ia A

B-3

1n<é - %;) +21nA=1ncg (B87)
2(; ial _
A (B - —2—) = C5 (B88)
.
— - 12
A = ic5<8 5 ) (B89)

and substituting for R from equation (B83) gives

1/2)" 12 -1/4
a2 1/2 a2
A = iCS +i- —4—' + F(t) = iCS(i'l) - —4" + F(t) (B30)

Integrating equation (B83) gives

iat a2 172
B = > + - T + F(t) dt (B91)
2 1/2
iB=—32Etf[—a—4—+F(t£I at

Substituting equations (B90) and (B91l) in equation (B76) gives

» 2 -1/4 . 5 1/2
8 = tc (1) / [— §4~ + F(til exp § - 32— ifl:— 34— + F(t)] at (B92)

Equation (B81) substituted in equation (B92) finally gives

1+

-1/4

5(il)l/z[-_—(c'w)2 +‘w2 cos f£(t) cos g(tﬂ

1/2
X exp {—cwt + if[— (cu))2 + w2 cos f(t) cos g(t)] / dt} (B93)
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Note that the integral in eguation (B93) may be written as
1
*iw [[—c + cos £ (t) cos g(t):] /2 dt.

Refer to equations (B73) and (B74) and let

a, = -0.470y_ cos (18.4t)

Gy = 1.474Y, cos (11.9t)
By = -0.221y_ cos (18.4t)
By = 0.221Y_ cos (11.9t)

and let 7Y = 18.4t and € = 11.9t. Then

cos f(t) cos g(t) cos (al + az) cos (Bl + 82) (B94)

and by series expansion,

1f 2 2 2 2
2(31 + 2000, + 0,0+ BT+ 2818, + B, )

cos f(t) cos g(t) 1 -

1 2, 2 2 2, 2 2

+‘1611 By® + 205788, + 078y + 205058,
+ 40,0,B8.R, + 20.,0.,B 2
1727172 17272

2, 2 2 2, 2
+a, Bl + 20, 8182 + a, 82 ) + ... (B95)

Since wo is a small angle, the small angle approximation can be made and all
terms higher than second order can be eliminated. This finally gives
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cos f(t) cos g(t) =

0.55511)02 cos

+

+

+

+

o.oo3311po4 +

By gathering like cosine terms and
be seen that all terms containing
Then,

cos f£(t) cos g(t) = 1 - O.622¢)O2 -
- 0.5559_2 cos
o

and the integral in equation (B93)

iiu)f [—c +1 - 0.62211102 - (0.0675

1 - 0.067511102 cos 2y - O.O675lpo2 + O.742ll)02 cos Y cos €

2e - 0.5559_ % + o.ooo338wo4 cos 4y

o.ooo3381po4 + o.001351p04 cos 2y + 0.0013511;04
4 4

O.O7OOlIJo cos 2€ cos € cos Y - O.O7OO¢)o cos € cos Y
4 4

0.0158wO cos 2Y cos 2€ + 0.015811)O cos 2Y

0.0158ll)o4 cos 2€ + O.OlSBLI)O4 + 0.0033111104 cos 4¢€

O.Ol32LPO4 cos 2g + 0.0066311)04 (B96)

taking VY, as a small angle, it can readily
wo4 can be dropped with little error.

0.0675y_% cos 2y

2e + o.742wo2 cos Y cos € (B97)

cos 2y + 0.555 cos 2¢

1/2
- 0.742 cos Y cos €Mh)] dt
Let ¢g = -c + 1 - 0.622w02; then the integral becomes
M1/2
iiw./-[%6 - (0.0675 cos 2y + 0.555 cos 2€ - 0.742 cos Y cos E)wo ] at
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Expanding the integrand by the binomial expansion gives

1/2
[%6 - (0.0675 cos 2y + 0.555 cos 2¢ - 0.742 cos Y cos E)wo%]

1 -
= ¢cg /2 - l/2c6

l/2(0.0675 cos 2Y + 0.555 cos 2¢€

1/2(-1/2) c -3/2 B0.0675 cos 2Y

- 0.742 cos Y cos E)L[)o2 + 3 6

2
+ 0.555 cos 26 - 0.742 cos Y cos e{] ¢o4 ... (B98)

Again taking the small angle approximation for small Y, and discarding all
terms higher than second order leaves the integral

2
. 1/2 o
Hiw c6 - ———E7§10.0675 cos 2Y + 0.555 cos 2¢€ - 0.742 cos Y cos €)| dt
2c6
(B99)
Substituting Y = 18.4t and € = 11.9t gives
w2
. 1/2 )
+iw c - —2-10.0675 cos 2(18.4t) + 0.555 cos 2(11.9t)
6 5e 172
6
- 0.742 cos (18.4t) cos (ll.9tii} at (B100)
1/2 U in 2(18.4¢t) in 2(11.9t)
. O sS1in - S1n .
t - ——— 0. + 0.
S S T VR 0675[: 2(18.4) ] 0 555[ 2(11.9) ]
6
sin (18.4 - 11.9)t sin (18.4 + 11.9)t
0'742[_ 2(18.4 - 11.9) ' 2(18.4 + 11.9) ]:} * ey (B101)
1/2 Vo’ 0.0675[sin 2(18.4t)
. 2 o . sin .
+ — p— -
sin((1 - e - 0,622y %)% 73 e [pin2gen]
2(1 - ¢ - 0.622Y, >
0.555[sin 2(11.9t) sin (6.50t) . sin (30.3t)
+ - . + + B102
11.9 | 2 ] 0 742[ 13.0 60.6 <7 (BL02)
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Substituting the above for the integral expression in equation (B93) gives

-1/4
0 = icS(i-l)l/z[;cz(u2 + m2 cos f(t) cos g(tﬂ /

w2

]

5 1/2
X exp|-cwt + iw({l - ¢ - 0.622¢ t -
o ( 6220 2)1/2
21 - ¢ - 0.622
o

x {0.00367[s1n 2(218.4t):l N 0_0466[:51n 2(211.9t):|

sin (6.50t) sin (30.3t)
- 0. + + B103
0 742[ 13.0 60.6 7 (B103)
Since wo is a small angle, <cos f(t) cos g(t) = 1 (see eg. (B97)) and
the integrand remains real until the damping almost becomes critical and 0 of
equation (B93) is no longer valid since A ¥ 0 in equation (B79). Normally,

most torsional operation of this kind is sufficiently far away from critical
damping operation to make equation (B93) quite valid. However, if the applica-
tion is such that operation is close to critical, then there are computer pro-
grams which will solve equation (B75) by substituting

7z = 0 (B104)

into equation (B75) and getting

7 + 2cwZ + wze cos £(t) cos g(t) =0 (B10O5)

Equations (B1l04) and (B105) are sufficient for
the computer format.

The following is an outline of the procedure
for obtaining a more general solution to the above
problem. Since the above solution demonstrates
that the perturbation does indeed produce a modu-
lation on the output, it is sufficient for this <
paper. The more general solution is left for
future development.

The angles Y, ¢, 7Y, and § shown in
sketch (e) are the same or similar in sense to
those used in spherical coordinates, and 0 is

the axial torsional angle. By convention, the 7 A
Z-axis as shown should be negative but it is
assumed positive. Sketch (e)
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The coordinates of the center of gravity are

X = L1 sin Y cos Y + L2 sin ¢ cos (B106)
y = Ll sin ¢ sin Yy + L2 sin ¢ sin Q (B107)
z = Ll cos ¥ + L2 cos ¢ (B108)

The velocities are
X = —Ll(sin V) (sin Y)Q + Ll(cos Y) (cos w)¢
- L,(sin ¢) (sin 2)Q + L, (cos Q) (cos $)¢ (B109)
y = L, (sin §) (cos Y)Yy + L, (sin Y) (cos P
+ L2(sin ¢) (cos Q)é + L2(sin Q) (cos ¢)$ (B110)
Z = -L, (sin WY - L, (sin ) d (B111)

The kinetic and potential energy become

2 2 2 I éz 1097 1067
_ mx my mz o) Q S)
Tty T Tt (B112)
vV = mg[?l(l - cos Y) + L2(l - cos ¢{] + %(92 + Y2 + QZ) (B113)

The Lagrangian then is

=T-V = %{}Ll(sin P) (sin Y)% + Ll(cos Y) (cos ¢)¢

. A2 .
L2(sin ¢) (sin Q)0 + L2(cos ) (cos ¢)é] + %[@l(sin P) (cos Y)Y

-+

. . M2
Ll(sin Y) (cos PY¥ + L_(sin ¢) (cos )R + L2(sin f2) (sin ¢)%]

2
N2 32 2
+ EELI(Sln vy - L2(51n d))(b] + o+ 5 + =3

mng(l - cos YY) - mgL2(l - cos ¢) - %(62 + Y2 + Qz) (B114)
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where

IQ = I¢ (B115)

and where interactions and other effects might slightly alter 8, the output
amplitude due to axial torsion, but most of the axial torque is assumed trans-
mitted at all angles of the suspension (flexible rotary cable principle) from
its normal. The upper and lower ends of the fiber suspensions are turned
through angles Yy and §l by the normal torgue component.

There are five generalized coordinates - Y, ¢, Y, §, and 6 -
represented by ¢, and dissipative generalized forces due to damping.
According to Lagrange's equation, namely,

—~<~7—> - —— = Generalized force (Bl1l6)

five equations of motion are obtained which can be solved, as was done in this
paper, for the output with perturbation effects.
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DERIVATION OF DAMPING COEFFICIENT FROM A DECAY CURVE USING
THE AXIS OF SYMMETRY AS THE REFERENCE DATUM
In this appendix, the equations for damping coefficient ¢ and rigidity K
are derived. To apply these equations, only two peak torsional amplitudes
(measured from the axis of symmetry of the decay curve) and the number of half-

periods between them must be known.

The equation for an unperturbed, freely oscillating torsion pendulum is
J6 + 26 + K68 =0 (C1)

where J 1is the polar torsional moment of inertia, 2 is the damping constant,
K is torsional rigidity, and 6, 6, and 6 are the angular displacement,
velocity, and acceleration of the pendulum. Let

b=— (€2)

and

(C3)

€
[
QR

Then equation (Cl) becomes
6+ 206 + w0 =0 (C4)
and the solution of equation (C4) is

2

6 = ¢y exp(—b + b™ - wz)t + c, exp(—b ~ b2 - w2>t (C5)

The initial conditions at t = 0 are

6 =6 6 =0 (C6)
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With these initial conditions, the constants c¢j; and c, can be obtained, so
2

that equation (C5) becomes
) exp(\’b2 - w2 t)
b™ - w

+ <l - —“’_E"““> exp(— b2 - @2 t) (C7)
b2 - w2

9%
0 = 7;-exp(—bt) <l +

b < w iw' = iw? - b2 (c8)
where W' 1is the damped angular velocity. Egquation (C7) becomes
L} b 3 L
B = 0, exp(-bt)|{cos w't + — sin w't (C9)
w
When t equals the period of oscillation T,

w'T = 27 (C10)

and from equations (C2), (C3), (C8), and (Cl0)

2T
- Ccl1
* 172 (c11)
K _ jL.Z
J 2J
Let
b L CL . .
—=¢c = —"= (Critical damping occurs when ¢ = 1.0) (Cl12)
w 2 (k3) /2

With equation (C1l2) in equation (C8),

. 2 1/2
w' = (1 c®) w (C13)

and from equations (Cll) and (C2)

2
gk = 39, 02,27 (c14)
o2
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The phase angle & is
L
S = tan"t %; (C15)

Equations (C8), (C9), (Ccl2), (Cl3), and (Cl5) give

90 exp {-cwt)
6 = sin (W't + §) (Cle)

The phase angle does not affect the period.

A typically damped output, on an expanded time base, would look like fig-
ure 11. To obtain the value of ¢ from this output, initial conditions must be
taken at a time t when 6 = 0. Hence, at any arbitrary peak displacement, a
time reference t = 0 1is taken to obtain from equation (Cl6),

%% .
0; = iz s 8 (C17)
(1 - c©)

At t = Tn/w', where n 1is the number of half-periods between Gi and en,

0 -
6 = o i/2 exp< iyﬂn) sin § (c18)

(1 - c2)

From equations (Cl7) and (C18),

9.
1 _ cw -
6;—— exp(w' ﬂn) (n 0,1,2,...) (C19)
In (8./6.)
c X T g (C20)
w' mn

Substituting equation (Cl3) results in

_a (c21)

Q
1l
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For obtaining ¢, the damping coefficient of the material, K, its
rigidity, and G, its shear modulus, only two peak points and the number of
half-periods separating them are needed. Since the expression used for obtain-
ing c¢ (eq. (Cl1l9)) is the decay envelope of the peaks, if two alternate peaks
are used, the algebraic sign of one of them must be reversed. Either way, the
axis 0O = 0 must be accurately known; this is a great disadvantage. 1In
appendix D, a three-successive-peak method is derived which does not have this
drawback. :
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THREE-SUCCESSIVE-PEAK METHOD OF OBTAINING DAMPING COEFFICIENT
FROM A DECAY CURVE USING ANY DATUM AS A REFERENCE

In appendic C, equations were derived for obtaining damping coefficient ¢
with two peak amplitudes and the number of half-periods between them known.
However, with this method the peak values must be measured from 6 = 0, the
axis of symmetry of the decay curve. There are numerous other ways of obtain-
ing ¢, some employing alternate peak measurements and others employing succes-—

sive peak measurements. It is felt that three successive peak measurements are
best from the point of view of accuracy. One of the reasons for this conclusion
can be seen from the calibrate curve in figure 13. If three successive points

5]
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Figure 13.- Calibrate curve showing galvanometer output as a
function of pendulum window angle input.
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are taken, the effects of nonsymmetries, variations in sensitivity, and non-
linearity are either minimized or eliminated. In this appendix, the three-
successive-peak method is derived; its only requirement is that the reference
axis from which the three successive peak values are measured be parallel to
® = 0. This is especially advantageous from the point of view of computer
readout of data.

From equation (C1l8), 6 for successive peaks is

3]
0, = ——Ll—/—z exp<— %@) sin 6 = 8 exp(— 9*352—@) (n=0,1,2,...) (D1)
1 - c?)
where sin 6§ = w'/w and w' = (1 - c2)l/2w. Also,
® .1 = 6, expl:— Z—“’ 2T (n + 1)] (D2)

Consider the ratios of the general terms in equations (D1l) and (D2):

6, 90 exp(— £$-2ﬂn> -
= = exp(—g 2ﬂ> = Constant (D3)
n+l eo exp[} 5?—2ﬂ(n + lﬂ

9

Now consider a translation of the 6,t coordinate system to the 6',t coordi-
nate system, as shown in the following sketch:

el
o' - 2Tn —f——>»
k______4ﬂ
2m
d 8 =06 -4
6
0

[\ A
\/\Jwti,
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For this coordinate system

8' +
n

e

en - d (n =0,1,2,...) (D4)
Substituting equation (D4) in equations (Dl) and (D2) results in
cw
d = 90 exp(- o 2ﬂn> (D5)
+d =6 - oonm o+ 1) (D6)
= 0, exp o

n+l

The ratio of equations (D5) and (D6) in the 8',t system is the same as in the
0,t system, that is,
' cw
6, +d 8o exp(— o 2Wn) cw
= = exp o' 2T ] = Constant (D7)

This equation can be solved for c
derived in appendix C.
in equation (D7),

From equations

D
+

58

+ 4 cw
el’]-f-l 6o eXpE w'

2m(n + lﬂ

to result in the two-point method
However it is dependent on d. To avoid measuring d

consider the next successive peak

cw
+d = 6 exp[:— ot 2T (n + 2{]
+ d
cu
3 = eXp(-w‘;‘ 2TT> (D8)
(D7) and (D8)
[o{43] '
a = exp<57-2ﬂ><en+l + d) (D9)
(D10)

cw [
+ d = exp(57-2ﬂ><9n+2 + d)
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Subtract G£+l + @ from both sides of equation (D9) and 6A+2 + d from both
sides of equation (D10) to obtain

05 = 8.,y = [%xp(gg 2w) - %}(e$+1 + d) (D11)

' ' cw '
en+l - en+2 = [%XP<ET 2“) - %](en+2 + d) (D12)

Taking the ratio of equations (D11l) and (D12) and substituting equation (D8)
result in

8' -8 6., + 4
'l’l 1’1':'1 = r.1+l = exp(((;—u;)- 2’]’]‘) (D13)
en+l - er1+2 en+2 +d
For n = O,
6. - 6.
° 1. exp(ﬁ? 2w) (D14)
el - 92 .

Taking the logarithm of both sides of equation (D14) results in

00 - 01
ln<69——7;%>
cw 1~ Y2/ _
o —*—*—TEF———— = a (D15)

This is similar to equation (C20). Note that this method requires three
points 66, ei, and 65 measured from any reference axis parallel to 06 = 0.
Since this method is independent of the position of ©6' = 0, it is very desir-
able. No restriction was placed on the 6 values; thus, they are the measured
values including their sign as measured from the reference datum. For these
reasons, this method is used for obtaining a and, from equation (C21), ¢, the
dynamic damping. Note that the above development for three successive peaks may
be readily extended to n successive peaks. For alternate peaks, however, the
sign of the alternate peaks has to be reversed so that they lie on the exponen-
tial curve. Hence, for three alternate peaks,

< en - On+1 >
Infj———5
cw _ On+1 *+ Oneo

o = - (D16)

Again, the algebraic values of 0' including their sign are measured from the
reference datum.
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